Drago Torkar

Research areas
  • Computer vision
  • Pattern recognition
  • Image processing
  • Machine vision

  • Projects
  • Distributed Artificial Intelligent Systems (2021-2024)
  • Computer structures and systems (2019-2024)
  • Intelligent Secure Trustable Things (2020-2023)

  •  
    Intelligent Secure Trustable Things[X]
    • acronym: InSecTT
    • type: ECSEL / H2020
    • duration: 2020-2023
    • content:
      Artificial Intelligence of Things (AIoT) is the natural evolution for both Artificial Intelligence (AI) and Internet of Things (IoT) because they are mutually beneficial. AI increases the value of the IoT through machine learning by transforming the data into useful information, while the IoT increases the value of AI through connectivity and data exchange. Therefore, InSecTT – Intelligent Secure Trustable Things, a pan-European effort with 54 key partners from 12 countries (EU and Turkey), will provide intelligent, secure and trustworthy systems for industrial applications to provide comprehensive cost-efficient solutions of intelligent, end-to-end secure, trustworthy connectivity and interoperability to bring the Internet of Things and Artificial Intelligence together. InSecTT aims at creating trust in AI-based intelligent systems and solutions as a major part of the AIoT, i.e. moving AI to the edge and making AI and ML based systems trustable, explainable and not just a black box.
      InSecTT will foster cooperation between big industrial players from various domains, a number of highly innovative SMEs distributed all over Europa and cutting-edge research organisations and university. The project features a big variety of industry-driven use cases embedded into various application domains, i.e. smart infrastructure, building, manufacturing, automotive, aeronautics, railway, urban public transport, maritime as well as health. The demonstration of InSecTT solutions in well-known real-world environments like trains, ports, airports and the health sector will generate huge impact on both high and broad level, going from citizens up to European stakeholders. It will establish the EU as a center of intelligent, secure and trustworthy systems for industrial applications enabled by a strong industry with a strong reputation and an informed society, in order to enable products and services based on AI compliant to European values and “Made in Europe".

  • Supporting Active Ageing through Multimodal coaching (2017-2021)
  • Advanced recognition (2020)
  • Machine vision quality control of molded plastic parts (2019-2020)
  • Resource Efficient Food and dRink for the Entire Supply cHain (2015-2019)
  • iNet - The Impact of Net Height in Table Tennis (2017-2018)
  • Computer structures and systems (2015-2018)
  • Computer structures and systems (2009-2014)
  • Mobile application for food ingredients informing (2009-2010)
  • Development and implementation of a new PIM binder system using advanced methods (2008-2010)
  • The role of Luka Koper in logistic support of the Slovenian Armed Forces and allies (2006-2008)
  • Adaptive Robots for Flexible Manufacturing Systems (2005-2008)
  • Computing structures and systems (2004-2008)
  • Upgrade of light armoured wheeled vehicles VALUK 6x6 (2006-2007)
  • Vision interface for ABB robots (2006)
  • Secure data storage unit based on new ferroelectric semiconductor memory devices (2004-2006)
  • 2D and 3D digital map system for land, aerial and sea orientation (2004-2005)
  • Modeling rheological properties of ceramic-paraffine suspensions for low-pressure injection-moulding (2003-2004)
  • Computing structures and systems (1999-2003)
  • High performance evolutionary techniques in hardware-software codesign (1999-2001)
  • PEMCAS: personal monitor for capability supervision (1997-1998)
  • Architectural synthesis of computer systems with testability issues (1995-1998)
  • Publications
    Journal articles
  • Biomarkers of pre-existing risk of torsade de pointes under Sotalol treatment, J. ELECTROCARDIOL. (2020)
  • Dynamic features of cardiac vector as alternative markers of drug-induced spatial dispersion, J PHARMACOL TOX MET (2020)
  • Knee stiffness and viscosity of human cadaver - Wartenberg test, BJBMS (2017)
  • Cell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast images, J.Microsc. (2011)
  • Identification of radon anomalies in soil gas using decision trees and neural networks, Nukleonika (2010)
  • Application of artificial neural networks in simulating radon levels in soil gas, ChemGe (2010)
  • Visual control of an industrial robot manipulator: Accuracy Estimation, Stroj. vestn. (2009)
  • Robot Vision Accuracy Estimation, Elektroteh. vest. (2009)
  • Apparent viscosity prediction of alumina-paraffin suspensions using artificial neural networks, J. mater. process. technol. (2008)
  • Evaluation of accuracy in a 3D reconstruction system, WSEAS Trans. Syst. Control (2007)
  • Control of a robotic manipulator by visual and speech information, Eng. rev. (2002)
  • An uncalibrated robot system for reaching and grasping objects in unpredictable physical environment, J. Electr. Eng. (2001)
  • GPS positioning and digital map processing in 2D and 3D terrain environment, J. Comput. Inf. Technol. (1994)
  • Computer processing of hard-copy maps and their application in satelite positioning, J. Commun. (1994)
  • Reflection on light distribution measurement, Sens. Rev. (1992)
  • Conference papers
  • Food Waste Ontology: A Formal Description of Knowledge from the Domain of Food Waste, BFNDMA 2019 at IEEE BigData 2019
  • Analysis of an Electrocardiographic Multilead System using Artificial Neural Networks - A Study of the Dispersion during Premature Ventricular Stimulation, Biosignals 2016
  • Accuracy of a 3D reconstruction system, ISPRA 2007
  • Robot TCP positioning with vision : accuracy estimation of a robot visual control system, ICINCO 2007
  • Estimation of accuracy for robot vision control, SHR2007
  • Radon in soil gas : application of neuron networks to identify anomalies caused by earthquakes, Hazards 2006
  • Dynamic viscosity prediction of alumina-paraffin suspensions using artificial neural networks, AERC 2005
  • The use of numerical simulation for the study of low-pressure injection moulding of alumina-paraffin suspensions, AERC 2003
  • Books & Chapters in Books
  • Optimal lead selection for evaluation ventricular premature beats using machine learning approach, (2017)
  • Radon as Earthquake Precursor - Methods for Detecting Anomalies, InTech - Open Access Publisher (2011)